Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition.

Identifieur interne : 000A13 ( Main/Exploration ); précédent : 000A12; suivant : 000A14

Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition.

Auteurs : Farshad Alizadeh Mansouri [Australie] ; Nicola Acevedo [Australie] ; Rosin Illipparampil [Australie] ; Daniel J. Fehring [Australie] ; Paul B. Fitzgerald [Australie] ; Shapour Jaberzadeh [Australie]

Source :

RBID : pubmed:29273796

Descripteurs français

English descriptors

Abstract

Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.

DOI: 10.1038/s41598-017-18119-x
PubMed: 29273796
PubMed Central: PMC5741740


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition.</title>
<author>
<name sortKey="Mansouri, Farshad Alizadeh" sort="Mansouri, Farshad Alizadeh" uniqKey="Mansouri F" first="Farshad Alizadeh" last="Mansouri">Farshad Alizadeh Mansouri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia. farshad.mansouri@monash.edu.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800</wicri:regionArea>
<wicri:noRegion>3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia. farshad.mansouri@monash.edu.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Acevedo, Nicola" sort="Acevedo, Nicola" uniqKey="Acevedo N" first="Nicola" last="Acevedo">Nicola Acevedo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800</wicri:regionArea>
<wicri:noRegion>3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Illipparampil, Rosin" sort="Illipparampil, Rosin" uniqKey="Illipparampil R" first="Rosin" last="Illipparampil">Rosin Illipparampil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800</wicri:regionArea>
<wicri:noRegion>3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fehring, Daniel J" sort="Fehring, Daniel J" uniqKey="Fehring D" first="Daniel J" last="Fehring">Daniel J. Fehring</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800</wicri:regionArea>
<wicri:noRegion>3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, Paul B" sort="Fitzgerald, Paul B" uniqKey="Fitzgerald P" first="Paul B" last="Fitzgerald">Paul B. Fitzgerald</name>
<affiliation wicri:level="1">
<nlm:affiliation>Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jaberzadeh, Shapour" sort="Jaberzadeh, Shapour" uniqKey="Jaberzadeh S" first="Shapour" last="Jaberzadeh">Shapour Jaberzadeh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199</wicri:regionArea>
<wicri:noRegion>3199</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29273796</idno>
<idno type="pmid">29273796</idno>
<idno type="doi">10.1038/s41598-017-18119-x</idno>
<idno type="pmc">PMC5741740</idno>
<idno type="wicri:Area/Main/Corpus">000863</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000863</idno>
<idno type="wicri:Area/Main/Curation">000863</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000863</idno>
<idno type="wicri:Area/Main/Exploration">000863</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition.</title>
<author>
<name sortKey="Mansouri, Farshad Alizadeh" sort="Mansouri, Farshad Alizadeh" uniqKey="Mansouri F" first="Farshad Alizadeh" last="Mansouri">Farshad Alizadeh Mansouri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia. farshad.mansouri@monash.edu.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800</wicri:regionArea>
<wicri:noRegion>3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia. farshad.mansouri@monash.edu.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Acevedo, Nicola" sort="Acevedo, Nicola" uniqKey="Acevedo N" first="Nicola" last="Acevedo">Nicola Acevedo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800</wicri:regionArea>
<wicri:noRegion>3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Illipparampil, Rosin" sort="Illipparampil, Rosin" uniqKey="Illipparampil R" first="Rosin" last="Illipparampil">Rosin Illipparampil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800</wicri:regionArea>
<wicri:noRegion>3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fehring, Daniel J" sort="Fehring, Daniel J" uniqKey="Fehring D" first="Daniel J" last="Fehring">Daniel J. Fehring</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800</wicri:regionArea>
<wicri:noRegion>3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, Paul B" sort="Fitzgerald, Paul B" uniqKey="Fitzgerald P" first="Paul B" last="Fitzgerald">Paul B. Fitzgerald</name>
<affiliation wicri:level="1">
<nlm:affiliation>Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jaberzadeh, Shapour" sort="Jaberzadeh, Shapour" uniqKey="Jaberzadeh S" first="Shapour" last="Jaberzadeh">Shapour Jaberzadeh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199</wicri:regionArea>
<wicri:noRegion>3199</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Arousal (physiology)</term>
<term>Emotions (physiology)</term>
<term>Executive Function (physiology)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Inhibition, Psychological (MeSH)</term>
<term>Male (MeSH)</term>
<term>Music (MeSH)</term>
<term>Prefrontal Cortex (physiology)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Reaction Time (physiology)</term>
<term>Transcranial Direct Current Stimulation (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adolescent (MeSH)</term>
<term>Adulte (MeSH)</term>
<term>Cortex préfrontal (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Fonction exécutive (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Jeune adulte (MeSH)</term>
<term>Musique (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Performance psychomotrice (physiologie)</term>
<term>Stimulation transcrânienne par courant continu (MeSH)</term>
<term>Temps de réaction (physiologie)</term>
<term>Émotions (physiologie)</term>
<term>Éveil (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cortex préfrontal</term>
<term>Fonction exécutive</term>
<term>Performance psychomotrice</term>
<term>Temps de réaction</term>
<term>Émotions</term>
<term>Éveil</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arousal</term>
<term>Emotions</term>
<term>Executive Function</term>
<term>Prefrontal Cortex</term>
<term>Psychomotor Performance</term>
<term>Reaction Time</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Female</term>
<term>Humans</term>
<term>Inhibition, Psychological</term>
<term>Male</term>
<term>Music</term>
<term>Transcranial Direct Current Stimulation</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Musique</term>
<term>Mâle</term>
<term>Stimulation transcrânienne par courant continu</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29273796</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition.</ArticleTitle>
<Pagination>
<MedlinePgn>18096</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-18119-x</ELocationID>
<Abstract>
<AbstractText>Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mansouri</LastName>
<ForeName>Farshad Alizadeh</ForeName>
<Initials>FA</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia. farshad.mansouri@monash.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia. farshad.mansouri@monash.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Acevedo</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Illipparampil</LastName>
<ForeName>Rosin</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fehring</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fitzgerald</LastName>
<ForeName>Paul B</ForeName>
<Initials>PB</Initials>
<AffiliationInfo>
<Affiliation>Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jaberzadeh</LastName>
<ForeName>Shapour</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001143" MajorTopicYN="N">Arousal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004644" MajorTopicYN="N">Emotions</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056344" MajorTopicYN="N">Executive Function</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007266" MajorTopicYN="Y">Inhibition, Psychological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="Y">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017397" MajorTopicYN="N">Prefrontal Cortex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011930" MajorTopicYN="N">Reaction Time</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065908" MajorTopicYN="N">Transcranial Direct Current Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29273796</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-18119-x</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-18119-x</ArticleId>
<ArticleId IdType="pmc">PMC5741740</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neurosci Lett. 2015 Apr 23;593:35-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 18;110 Suppl 2:10430-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Sex Differ. 2016 Feb 09;7:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26862388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Oct 15;5:15219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26469712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Feb;18(2):483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12595201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2010 May;6(5):267-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2015 Feb;19(2):86-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25534332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2012 Sep;62(3):1489-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2012 Nov 8;76(3):486-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23141061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Neurol. 2015;2015:707625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26508813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Psychophysiol. 2009 Jan;71(1):50-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cochrane Database Syst Rev. 2011 Dec 07;(12):CD004025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22161383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2017 Jan;40(1):15-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27986294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Syst Neurosci. 2015 Dec 14;9:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26696841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cochrane Database Syst Rev. 2008 Jan 23;(1):CD004517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18254052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2014 Mar;15(3):170-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24552785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2004 Dec;8(12):539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Mar 8;26(10):2745-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Music Ther. 2013 Fall;50(3):198-242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24568004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2008 Nov;12(11):418-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2013 Apr;17(4):179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23541122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2011 Feb;15(2):85-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2015 Mar;1337:212-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25773637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1169:406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2016 Nov 16;10 :579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2003 Oct;126(Pt 10):2139-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12821513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Aging Neurosci. 2014 Oct 15;6:284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25360112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2005 Oct 1;27(4):885-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15996878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2011 Oct 20;12(11):652-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22011681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Neurosci. 2001;24:167-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 08;10(5):e0126224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25955253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2017 Nov;18(11):645-657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28951610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2007 May;1104:108-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17347332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2005 Apr 1;25(2):444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15784423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2009 Feb;10(2):141-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19153577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2008 Apr;11(4):389-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18368045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2005 Apr;9(4):159-62; discussion 162-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15808493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2016 Jul;44(2):1856-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27207192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2007 Sep;17 Suppl 1:i101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17725993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2015 Jul;74:74-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26100562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Nov;8(11):1458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q J Exp Psychol (Hove). 2014;67(12):2381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24873685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2012 Feb 01;11(2):141-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22293568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1413-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8941953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2014 Jul;18(7):334-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24972505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2015 Dec 10;1629:160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26499261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2002 Aug 9;328(2):145-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12133576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1169:374-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2014 Dec;37(12):742-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25189102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2015 Mar;1337:147-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25773629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ergonomics. 2002 Feb 20;45(3):203-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11964204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2015 Feb 4;85(3):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25654259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Stimul. 2013 Nov;6(6):932-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23664681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2001 May;12(3):248-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11437309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Aug 13;34(33):11016-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1999 Jul 1;19(13):5473-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Psychol. 2012 Jan;89(1):220-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22027085</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Mansouri, Farshad Alizadeh" sort="Mansouri, Farshad Alizadeh" uniqKey="Mansouri F" first="Farshad Alizadeh" last="Mansouri">Farshad Alizadeh Mansouri</name>
</noRegion>
<name sortKey="Acevedo, Nicola" sort="Acevedo, Nicola" uniqKey="Acevedo N" first="Nicola" last="Acevedo">Nicola Acevedo</name>
<name sortKey="Fehring, Daniel J" sort="Fehring, Daniel J" uniqKey="Fehring D" first="Daniel J" last="Fehring">Daniel J. Fehring</name>
<name sortKey="Fehring, Daniel J" sort="Fehring, Daniel J" uniqKey="Fehring D" first="Daniel J" last="Fehring">Daniel J. Fehring</name>
<name sortKey="Fitzgerald, Paul B" sort="Fitzgerald, Paul B" uniqKey="Fitzgerald P" first="Paul B" last="Fitzgerald">Paul B. Fitzgerald</name>
<name sortKey="Illipparampil, Rosin" sort="Illipparampil, Rosin" uniqKey="Illipparampil R" first="Rosin" last="Illipparampil">Rosin Illipparampil</name>
<name sortKey="Jaberzadeh, Shapour" sort="Jaberzadeh, Shapour" uniqKey="Jaberzadeh S" first="Shapour" last="Jaberzadeh">Shapour Jaberzadeh</name>
<name sortKey="Mansouri, Farshad Alizadeh" sort="Mansouri, Farshad Alizadeh" uniqKey="Mansouri F" first="Farshad Alizadeh" last="Mansouri">Farshad Alizadeh Mansouri</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29273796
   |texte=   Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29273796" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021